SHORT COMMUNICATION

CYCLOPROPYLMETHOXYCARBENE: A KINETIC LIMIT ON THE 1,2-CARBON MIGRATION

ROBERT A. MOSS,* EUN G. JANG, HONG FAN, MAREK WŁOSTOWSKI AND KARSTEN KROGH-JESPERSEN

Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, USA

Cyclopropylmethoxycarbene undergoes ambiphilic-nucleophilic intermolecular reaction with alkenes and methanol, but its intramolecular chemistry (1,2-carbon migration) is suppressed ($k < 3 \times 10^3 \text{ s}^{-1}$) by the α -methoxy substituent.

INTRODUCTION

The influence of α -heteroatomic substituents on the kinetics of carbene rearrangements should be profound. For example, high-level *ab inito* calculations on the reaction

$$Me - \ddot{C} - X \xrightarrow{1,2 \sim H} CH_2 = CHX$$
 (1)

predict activation energies of 0.6, 11.5, 19 and 27.2 kcal mol⁻¹ (1 kcal = 4.184 kJ), where X = H, Cl, F, or OMe, respectively, so that the 1,2-hydride migration of methylmethoxycarbene should be suppressed relative to alternative, intermolecular reactions. Nevertheless, suppression may not be complete: thermally generated (25 °C) Me—C—OMe appears to give traces of methyl vinyl ether.

In order to examine more closely the dependence of 1,2-carbenic rearrangements on α -heteroatomic substituents, we turned to the cyclopropylcarbene \rightarrow cyclobutene 1,2-carbon migration:

where, using laser flash photolytic (LFP) methodology, we have already measured rate constants and activation parameters for the rearrangements of carbenes 1-Cl and 1-F. ^{3,4} We have now generated cyclopropylmethoxy-carbene, 1-OMe, and found that its intramolecular

rearrangement to 1-methoxycyclobutene, 2-OMe, is indeed suppressed. On the other hand, intermolecular reactions with methanol and alkenes occurred readily. LFP studies not only substantiated the nucleophilic character of 1-OMe, but also analysis of its reaction with methanol permitted us to assign an upper limit of $k < 3 \times 10^3 \, \text{s}^{-1}$ to the 1,2-C migration of 1-OMe in solution.

RESULTS

Product studies

Cyclopropylmethoxydiazirine, 3-OMe, was prepared from cyclopropylamidinium chloride.⁵ oxidation⁶ (aqueous NaOBr, dimethyl sulfoxide) afforded bromodiazirine, 3-Br (λ_{max} , pentane, 348, 358, 380 nm), which was removed under vacuum at < 0.1 mmHg and trapped in dimethylformamide (DMF) at 77 K. Exchange^{2,7} with NaOMe (DMF, -30to -20 °C, 2 h) then provided 3-OMe (λ_{max} , pentane, 344, 350, 358 nm), which was extracted into pentane or chloroform after an ice-water quench of the reaction mixture. Dried (CaCl₂), freshly prepared pentane (or chloroform) solutions of 3-OMe were used in subsequent experiments. The NMR spectrum of 3-OMe (\delta, CDCl3) revealed cyclopropyl proton multiplets at 0.2-0.3, 0.5-0.6 (2H each) and 0.65-0.75(1H) and a singlet for OMe at 3.25 (3H).

Diazirine 3-OMe $(A_{358} \approx 1.0)$ was thermally unstable, decomposing in pentane at 25 °C with $k = 2.1 \times 10^{-3} \text{ s}^{-1}$, $\tau_{1/2} \approx 5.5 \text{ min}$. The products included azine 4, cyclopropanecarboxyaldehyde, 5, its

^{*} Author for correspondence.

dimethyl acetal, **6**, and methyl cyclopropanecarboxylate, **7**, in a distribution of 59:13:16:11. The overall yield of azine was 6.5%, based on cyclopropylamidinium salt; assuming 50% yields for the Graham oxidation and diazirine exchange reactions, the decomposition of 3-OMe to products **4**–7 must also have proceeded in *ca* 50% yield. Azine **4**, m.p. 93-95 °C, was characterized by NMR and mass spectrometry and elemental analysis, whereas products **5**–7 were identical [NMR, gas chromatography (GC)] with commercial or independently prepared (**6**)⁸ samples.

Aldehyde 5 most likely stems from the capture of carbene 1-OMe by adventitious water, followed by the loss of methanol from hemiacetal 8:

3-OMe
$$\frac{-N_2}{1-OMe}$$
 $\frac{H_2O}{0H}$ $\frac{1-OMe}{MeO}$ $\frac{1-OMe}{OH}$ $\frac{1-OMe}{1-OMe}$ $\frac{1-OMe}{1-OMe$

Methanol itself, however, is a powerful carbenaphile (see below), so that it traps 1-OMe affording acetal 6. Ester 7 probably represents the reaction of 1-OMe with oxygen; products analogous to 4-7 have been observed in the reaction of Ph-C-OMe. 9

Significantly, no methoxycyclobutene, 2-OMe, was observed in thermal or photochemical decompositions of 3-OMe in either pentane or CDCl₃. Authentic 2-OMe was prepared from cyclobutanone by Gale's procedure; ¹⁰ its distinctive NMR spectrum, particularly the vinyl resonance at δ_{CDCl_3} 4.49, made it easy to demonstrate its absence to less than 3% in crude product mixtures. There was also no evidence for the formation of methoxymethylenecyclopropane (δ_{CCl_4} ca 6.4¹¹), the 1,2 ~ H product of 1-OMe.

Cyclopropylmethoxycarbene displayed a lively intermolecular chemistry. Thermal decomposition of 3-OMe in the presence of methanol afforded acetal 6 in > 90% yield based on the diazirine. Thermolysis of the diazirine in the presence of excess of alkenes gave the appropriate cyclopropanes, 9 in ca 5% yields based on the amidinium salt; cf. equation (4). These yields correspond to ca 25% based on diazirine. Additions to the styrenes were accompanied by some azine formation, Cyclopropanes were not observed as significant pro-

ducts in the reactions of 1-OMe with either trimethylethylene or 2-ethylbutene-1.

3-OMe
$$\frac{25^{\circ} \text{ C}}{-\text{N}_{2}}$$
 1-OMe $\frac{\text{R}_{1}}{\text{H}_{2}}$ C=CH₂ $\frac{\text{R}_{1}}{\text{R}_{2}}$ (4)

a, $R_1 = R_2 = Me$; b, $R_1 = CN$, $R_2 = H$ c, $R_1 = CN$, $R_2 = CI$; d, $R_1 = Ph$, $R_2 = H$ e, $R_1 = p$ -MeOPh, $R_2 = H$; f, $R_1 = p$ -CIPh, $R_2 = H$

Except for 9a, the cyclopropanes were all *syn-anti* isomer mixtures. They were purified by Kugelrohr distillation and/or preparative GC, and characterized by appropriate NMR spectra, elemental analyses and/or exact mass spectrometric measurements.

Kinetic studies

LFP⁹ of a freshly prepared pentane solution of 3-OMe (10 °C, $A_{358} \approx 1 \cdot 0$) at 351 nm, 50-80 mJ, 14 ns, gave rise to a well defined, transient UV absorption (λ_{max} 375 nm) that originated within the time period of the laser pulse. The transient, which we assign to carbene 1-OMe, decayed with pseudo-first-order kinetics ($k \approx 4 \times 10^4 \text{ s}^{-1}$) that were dependent on [3-OMe], due to the reaction of the carbene with the diazirine (affording 4). The UV absorption of 1-OMe is very similar to that of *trans*-Me-C-OMe (λ_{max} 375 nm); both carbenes also have similar calculated HOMO and LUMO orbital energies (see below).

The LFP UV absorption of 1-OMe in pentane could be quenched by methanol or alkenes [cf. equation (4)]; trimethylethylene, however, did not quench the carbene on the time scale of the laser experiment $(k < 10^4 \text{ s}^{-1})$. Quenching by methanol was effective at very low concentrations; in the range $6 \times 10^{-4} < [\text{MeOH}] < 9 \times 10^{-3} \text{ M}$, the decay of 1-OMe was linearly dependent on [MeOH], affording $k \approx 2 \cdot 1 \pm 0 \cdot 8_2 \times 10^8 \text{ l mol}^{-1} \text{ s}^{-1}$ for the bimolecular rate constant of the 1-OMe–MeOH reaction. In this concentration range, methanol is most likely reacting as a monomer. 12,13

When diazirine 3-OMe $(3.6 \times 10^{-5} \text{ M}, \text{ relative to an internal cyclohexane standard)}$ was decomposed at

Table 1. Absolute rate constants for reactions of 1-OMe and alkenes a

Alkene	10 ⁻⁵ k ₂ (l mol ⁻¹ s ⁻¹) ^b
CH ₂ =CHCN	28 ± 5
CH ₂ =CCICN	59 ± 2
p-MeOC ₆ H ₄ CH=CH ₂	$3 \cdot 8 \pm 0 \cdot 2$
$p\text{-MeC}_6H_4CH=CH_2$	$1 \cdot 7 \pm 0 \cdot 1$
$C_6H_5CH=CH_2$	$2 \cdot 4 \pm 0 \cdot 1$
p-ClC ₆ H ₄ CH=CH ₂	$4 \cdot 1 \pm 0 \cdot 7^{c}$
m-ClC ₆ H ₄ CH=CH ₂	1.5 ± 0.4

^a At 10 °C in pentane.

25 °C in a CDCl₃ solution that was $7 \cdot 4 \times 10^{-5}$ M in methanol, NMR analysis indicated a 97% conversion to acetal **6**, with no sign of cyclobutene **2**-OMe. Assuming that the acetal formation (k_{ψ}) is pseudo-first order, and recalling that $k \approx 2 \times 10^8$ l mol⁻¹ s⁻¹ for the 1-OMe-MeOH reaction, k_{ψ} should be $ca \cdot 1 \cdot 5 \times 10^4$ s⁻¹ under our reaction conditions. We estimate that we could easily detect 20% of cyclobutene **2**-OMe vs acetal **6**, so that the first-order rate constant for 1-OMe \rightarrow **2**-OMe cannot exceed $(1/5)k_{\psi} \approx 3 \times 10^3$ s⁻¹ in chloroform at 25 °C.

Quenching of LFP-generated 1-OMe in pentane could also be accomplished with alkenes, with bimolecular rate constants extracted in the usual manner. 9,14 These results are collected in Table 1.

DISCUSSION

In contrast to the behavior of carbenes 1-Cl and 1-F, 1-OMe does not undergo the intramolecular 1,2-carbon migration reaction in solution; the expected rearrangement product, 2-OMe, cannot be detected. So uncompetitive is the ring expansion pathway that 1-OMe preferentially undergoes intermolecular reactions with its diazirine precursor (affording azine 4), and also with trace amounts of water, methanol or oxygen (yielding products 5-7).

The near quantitative conversion of 1-OMe to acetal 6 with methanol serves to fix an upper rate constant limit for the (unobserved) 1-OMe \rightarrow 2-OMe rearrangement of $ca \ 3 \times 10^3 \ s^{-1}$. This can be compared with rate constants of 9×10^5 and $1 \cdot 4 \times 10^5 \ s^{-1}$ for the 1-Cl \rightarrow 2-Cl^{3a} and 1-F \rightarrow 2-F⁴ rearrangements, respectively. Clearly the α -methoxy substituent in carbene 1 effectively suppresses the 1,2 \sim C rearrangement relative to the α -Cl or α -F substituents.

The observed activation energies for the $1-\text{Cl}^{3b}$ and $1-\text{F}^4$ rearrangements are $3\cdot 0$ and $4\cdot 2$ kcal mol⁻¹, respectively. If the pre-exponential factor for the putative $1,2\sim C$ shift of 1-OMe were as unfavorable as

those observed for 1-Cl and 1-F (log $A \approx 8 \cdot 2 - 8 \cdot 3 \text{ s}^{-1}$), then, from the maximum rate constant, we can estimate that E_a for 1-OMe \rightarrow 2-OMe must be at least $6 \cdot 5$ kcal mol⁻¹.

The activation energies for $1,2 \sim C$ shifts in carbenes 1-X are 4-5 times smaller than the corresponding calculated values for $1,2 \sim H$ shifts in Me-C-X, but they do fall in the expected order as a function of X, viz., MeO > F > Cl. We would expect $E_a(1,2 \sim C)$ to be smaller than $E_a(1,2 \sim H)$; indeed, the activation energy for $1-Cl \rightarrow 2-Cl$ has been calculated as ca 8·8 kcal mol⁻¹, ^{3a} compared with 11·5 kcal mol⁻¹ for Me-C-Cl \rightarrow vinyl chloride. Nevertheless, there remain sizable (and as yet unexplained) discrepancies between the calculated and (very low) observed activation energies for $1,2 \sim C$ reactions. Conceivably, heavy atom tunneling might be involved.

The absolute rate constants (Table 1) for the additions of 1-OMe to various alkenes reveal the ambiphilic–nucleophilic pattern 15 of reactivity that would be expected for a monoalkoxycarbene, 2.9 Geometry-optimized ab initio calculations afforded orbital energies (in eV) computed at the HF/4–31G//3G level for the trans-1-X carbenes (10): $\varepsilon_{LU}(p) = 2.01$ (X = Cl), 2.88 (X = F) and 3.97 (X = OMe); $\varepsilon_{HO}(\sigma) = -10.08$ (X = Cl), -10.32 (X = F) and -9.43 (X = OMe) (all ab initio calculations made use of the Gaussian 88 series of progams; 16 a detailed description of the methods used in this work can be found in Ref. 17). The pronounced increase in ε_{LU} as X

is changed from Cl to F to OMe is consistent with a change from the predominant electrophilicity of 1-Cl 18 to the observed ambiphilicity–nucleophilicity of 1-OMe.

Indeed, computations of the differential orbital energies 15 ($\varepsilon_{\rm aubene}^{\rm LU} - \varepsilon_{\rm alkene}^{\rm HO}$) and ($\varepsilon_{\rm alkene}^{\rm LU} - \varepsilon_{\rm carbene}^{\rm HO}$) for the reactions of 1-OMe with the alkenes in Table 1 predict that the second or 'nucleophilic' term should be dominant in each carbene—alkene addition reaction. Moreover, the orbital energies of *trans,trans*-1-OMe (11) and *trans*-Me-C-OMe ($\varepsilon_{\rm LU} = 4.04$ eV, $\varepsilon_{\rm HO} = -9.41$ eV)² are nearly identical, so that their philicities should be similar. It is unclear, however, why the nucleophilicity of Me-C-OMe toward α -chloroacrylonitrile is much more strongly expressed 2 than that of 1-OMe, although

^b Errors are average deviations of two determinations except where indicated.

Average of three determinations.

enhanced steric problems are conceivable in additions of 1-OMe (11).

Finally, we note that the *trans*(cyclopropyl), *trans*(methyl) conformer of 1-OMe (11) is the calculated global minimum; the *trans*(cyclopropyl), *cis*(methyl) conformer (12) is $2 \cdot 0$ kcal mol⁻¹ higher in energy; the remaining local minima, *cis*(cyclopropyl), *trans*(methyl)-1-OMe and *cis*(cyclopropyl), *cis*(methyl)-1-OMe, are found $7 \cdot 6$ and $19 \cdot 9$ kcal mol⁻¹, respectively, above 11 (these calculations are at the MP2/6- $31G^*/6-31G^*$ level: cf. Ref. 17).

CONCLUSION

Cyclopropylmethoxycarbene displays ambiphilic–nucleophilic selectively toward alkenes in solution. However, its intramolecular chemistry is effectively suppressed by the α -methoxy carbenic substituent. The absence of 1-methoxycyclobutene, the putative product of a 1,2 \sim C shift, after trapping of the carbene with methanol, permits us to place an upper limit of ca 3 \times 10³ s⁻¹ on the rate constant of the 1,2 \sim C rearrangement in solution.

ACKNOWLEDGEMENTS

The authors thank Mr G-J. Ho for technical assistance. They are grateful to the National Science Foundation for financial support.

REFERENCES

- J. D. Evanseck and K. N. Houk, J. Phys. Chem. 94, 5518 (1990).
- R. S. Sheridan, R. A. Moss, B. K. Wilk, S. Shen, M. Włostowski, M. A. Kesselmayer, R. Subramanian, G. Kmiecik-Ławrynowicz and K. Krogh-Jespersen, J. Am. Chem. Soc. 110, 7563 (1988).

- (a) G.-J. Ho, K. Krogh-Jespersen, R. A. Moss, S. Shen, R. S. Sheriden and R. Subramanian, J. Am. Chem. Soc. 111, 6875 (1989); (b) R. A. Moss, G.-J. Ho, S. Shen and K. Krogh-Jespersen, J. Am. Chem. Soc. 112, 1638 (1990); (c) M. T. H. Liu and R. Bonneau, J. Phys. Chem. 93, 7298 (1989).
- 4. R. A. Moss, G.-J. Ho and W. Liu, J. Am. Chem. Soc. in press.
- A. W. Dox and F. C. Whitmore, Org. Synth. Coll. Vol. 1, 5 (1941).
- 6. W. H. Graham, J. Am. Chem. Soc. 87, 4396 (1965).
- (a) R. A. Moss, M. Włostowski, S. Shen, K. Krogh-Jespersen and A. Matro, J. Am. Chem. Soc. 110, 4443 (1988);
 (b) Ref. 2, note (9).
- F. P. B. van der Maeden, H. Steinberg and Th. J. de Boer, Tetrahedron Lett. 4521 (1967).
- R. A. Moss, S. Shen, L. M. Hadel, G. Kmiecik-Ławrynowicz, J. Włostowska and K. Krogh-Jespersen, J. Am. Chem. Soc. 109, 4341 (1987).
- 10. D. M. Gale, US Pat. 3 696 080, example 60 (1972).
- A. T. Bottini and L. J. Cabral, Tetrahedron 34, 3187 (1978).
- D. Griller, M. T. H. Liu and J. C. Scaiano, J. Am. Chem. Soc. 104, 5549 (1982).
- X.-M. Du, H. Fan, J. L. Goodman, M. A. Kesselmayer, K. Krogh-Jespersen, J. A. LaVilla, R. A. Moss, S. Shen and R. S. Sheridan, J. Am. Chem. Soc. 112, 1920 (1990).
- N. J. Turro, J. A. Butcher, Jr, R. A. Moss, W. Guo, R. C. Munjal and M. Fedorynski, *J. Am. Chem. Soc.* 102, 7577 (1980).
- 15. R. A. Moss, Acc. Chem. Res. 13, 58 (1980); 22, 15 (1989).
- M. J. Frisch, M. Head-Gordon, H. B. Schlegel, K. Raghavachari, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol and J. A. Pople, GAUSSIAN 88, Gaussian, Pittsburgh, PA (1988).
- W. J. Hehre, L. Radom, J. A. Pople and P.v.R. Schleyer, *Ab Initio Molecular Orbital Theory*. Wiley-Interscience, New York (1986).
- R. A. Moss and M. E. Fantina, J. Am. Chem. Soc. 100, 6788 (1978); R. A. Moss, M. Vezza, W. Guo, R. C. Munjal, K. N. Houk and N. G. Rondan, J. Am. Chem. Soc. 101, 5088 (1979).